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1  Introduction

Proper use of probabilistic 
reasoning has the potential to 
improve dramatically the effi ciency 
and quality of the entire criminal 
justice system. Bayes theorem is a 
basic rule, akin to any other proven 
maths theorem, for updating the 
probability of a hypothesis given 
evidence. Probabilities are either 

combined by this rule, or they are 
combined wrongly. Yet, the Court of 
Appeal in the case of R v T [1] ruled 
that the use of formulas to calculate 
probabilities and reason about the 
value of evidence was inappropriate 
in the area of footwear evidence. It 
regarded the forensics of footwear 
matching as ‘unscientifi c’ and not 
having a suffi ciently ‘fi rm statistical 
base’ in contrast to DNA forensics. 

Specifi cally, Points 86 and 90 of the 
ruling respectively assert: 

“..We are satisfi ed that in the area 
of footwear evidence, no attempt can 
realistically be made in the generality 
of cases to use a formula to calculate 
the probabilities. The practice has no 
sound basis”.

“ It is quite clear that outside the 
fi eld of DNA (and possibly other areas 
where there is a fi rm statistical base) 
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Abstract  A 2010 UK Court of Appeal Ruling (known as “R v T”) asserted that Bayes theorem and likelihood ratios 
should not be used in evaluating forensic evidence, except for DNA and ‘possibly other areas where there is a fi rm 
statistical base’. The potential impact of this ruling is enormous and it has drawn fi erce criticism from expert witnesses, 
academics and lawyers, who have identifi ed various weaknesses and fallacies in the ruling. This paper focuses on the 
strategic and cultural challenges that the ruling raises to ensure that the role of Bayes is better understood and exploited 
in the presentation of forensic evidence. We provide a simple unifying way of describing all probabilistic forensic ‘match’ 
evidence; this enables us to easily identify and avoid the kind of common misunderstandings and fallacies that have 
affl icted probabilistic reasoning about evidence, including especially why it is irrational to assume that some forensic 
evidence is ‘statistically sound’ whereas other less established forensic evidence is not. But these misunderstandings are 
not restricted to lawyers, since we show that both forensic scientists and even Bayesian experts have consistently failed 
to include all relevant information in their evidence, such as error probabilities, and this applies to DNA as much as 
any other forensic science. We also show that there are severe limits of the extent to which the results of Bayes can be 
presented in purely intuitive terms; we show that the scope in forensics is even narrower than previously assumed. Hence, 
there are two major challenges facing the opponents of the R v T ruling: First, there must be much greater awareness of 
the need to improve Bayesian forensic arguments (before they are even presented in court) in order to avoid the common 
errors and omissions that are made. Second, there must be a radical rethink on the strategy for presenting the results of 
Bayesian arguments in court. Resorting to the formulas and calculations in court is a dead end strategy since these will 
never be understood by most lawyers, judges and juries, but the intuitive presentations simply do not scale up. Ultimately 
this means getting the lay observers to ‘accept’ that they need only question the prior assumptions that go into the 
Bayesian calculations and not the accuracy or validity of the calculations given those assumptions. Bayesian networks 
may provide a suitable mechanism for performing these calculations.

Keywords:  Forensic science, Bayes, Evidence.
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this court 1 has made it clear that 
Bayes theorem and likelihood ratios 
should not be used”

Given its potential to change 
the way forensic experts analyse 
and present evidence in court, 
experts have been understandably 
quick to publish articles criticising 
the ruling. At the time of writing 
there have already been at least four 
such excellent articles [12],[29],[31],[32] 
that provide a detailed analysis of 
the case and ruling. These papers 
recognise that there were weaknesses 
in the way the expert presented the 
probabilistic evidence (in particular 
not making clear that likelihood 
ratios for different aspects of the 
evidence were multiplied together 
to arrive at a composite likelihood 
ratio), but nevertheless express deep 
concern about the implications for 
the future presentation by experts 
of forensic evidence. The papers 
recognise positive features in the 
ruling (notably that experts should 
provide full transparency in their 
reports and calculations) but they 
provide compelling arguments as to 
why the main recommendations stated 
above are problematic. For example, 
[32] uses the following analogy of 
likelihood ratio calculations with area 
calculations:

Saying the expert should not use 
this ‘mathematical formula’ to assess 
the composite likelihood ratio is like 
saying that if one is just estimating 
by eye the area of a fi eld, one is not 
allowed to multiply estimates of its 
width and length together. Clearly 
it is the correct procedure: there is 
no uncertainty in the relationship 
between length, width, and area, only 
in their values. If the Court were to 
say that the expert was not to use 
a logical procedure, rather than a 
‘mathematical formula’, the fl aw in 
its reasoning would be obvious.

The authors in [32] also conclude 
that:

..the Court has not understood 
the difference between assessments of 
the probability of a proposition and 
of the strength of evidence for the 
proposition; the second is a confusion 
between uncertainty in the values 
of the variables and uncertainty in 
their relationship in a mathematical 
formula. The fact that variables 
cannot be precisely expressed does not 
affect the validity of the relationships 
described by the formula.

The authors in [31] highlighted 
the inconsistency in the ruling 
which, on the one hand rejects the 
use of Bayes and likelihood ratio 
calculations, while on the other hand 
insists on full transparency of all 
calculations. They ask:

..how could such an injunction 
ever be enforced on forensic scientists 
… The best that might be imagined 
would be a policy of “don’t ask, don’t 
tell”, whereby experts formulated 
their conclusions according to their 
good faith understanding of scientifi c 
protocol but carefully concealed their 
“deviant” probabilistic reasoning 
from legal scrutiny.

On a similar theme the authors in 
[11] assert that:

…the evaluation of evidence for 
a court of law is not just a matter of 
“using likelihood ratios” but one of 
working to a set of principles that are 
founded on logic. To deny scientists 
the contemplation of the likelihood 
ratio – whether quantitative or 
qualitative – is to deny the central 
element of this logical structure

Clearly, as pointed out in 
[32], the ruling in [1] exhibits 
misunderstandings of some 
fundamental ideas of probabilistic 
reasoning and even includes instances 
of the fallacy of the transposed 
conditional, despite the dozens of 
papers and even rulings about it over 
many years. That such errors should 
continue to be made routinely by 
members of the legal profession (see 
also [19] for other recent examples) 

indicates that we (meaning the 
community of experts in probabilistic 
reasoning) have failed to communicate 
our arguments effectively where it 
matters most. In Section 2 we explain 
the challenges that this failing poses 
for expert witnesses and Bayesians. 
The rest of the paper addresses the 
challenge and is structured as follows:

• In Section 3 we introduce 
a hypothetical forensic 
‘science’ in order to present 
the core ideas of forensic 
match evidence in a simple 
unifying way. This enables 
us to explain in very 
simple terms the Bayesian 
approach and to expose 
not just the fundamental 
misunderstandings in the 
R v T ruling, but also a 
number of key issues that 
have been missed in previous 
discussions.

• In Section 4 we use the 
generic example to highlight 
the irrationality of the core 
message in the R v T ruling 
(namely that there can be 
a clear distinction between 
forensic methods that are 
or are not ‘statistically 
sound’ and different allowed 
reasoning applied).

• While Sections 3 and 4 
expose the weaknesses in 
the R v T ruling, Section 
5 explains why, in many 
ways, the ruling is perfectly 
understandable, since 
we show that forensic 
probabilistic evidence 
is usually presented in 
a confusing -, and often 
incorrect - way. In particular, 
forensic scientists and even 
Bayesian experts typically 
ignore (or do not properly 
articulate) the potential for 
testing errors (false positives 
and false negatives).

• Hence in Section 6 we show 
that, when the potential for 
testing errors is included (as 

1 The judge is actually referring to 
the Court of Appeal ruling in the 
case of Adams, which is mentioned 
in Point 89. ■
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it should be) this introduces 
signifi cant complexity even 
in very simple cases. The 
key point is that, even in the 
simplest case, it is unrealistic 
ever to expect the associated 
Bayesian argument to be 
understood by lay people. 
We explain how the use of 
Bayesian network models 
may potentially address this 
problem.

• Finally, in Section 7 we 
present the grand challenge 
that Bayesians need to 
address before Bayes can 
ever take (what Bayesians 
feel should be) its rightful 
central position in legal 
reasoning.

2  The main challenges for 
expert witnesses and Bayesians

While the various papers on 
the ruling in [1] have done a fi ne job 
analysing in depth the weaknesses 
contained therein, there should be 
no doubt that the ruling is a damning 
indictment of the community 
of experts and academics who 
recognise the central importance of 
Bayesian reasoning for evidence 
evaluation. Despite some twenty-
fi ve years of work explaining the 
power and relevance of Bayes to the 
law, (resulting in several hundred 
academic publications and dozens of 
textbooks) the actual impact on legal 
practice has been minimal.

This failure must be attributed 
to our inability to communicate the 
core ideas in such way that they are 
accepted as a standard tool of the 
trade rather than as they are perceived 
now by much of the legal profession: 
an exotic, somewhat eccentric method 
to be wheeled out for occasional 
specialist appearances whereupon a 
judge or lawyer will cast doubts on, 
and even ridicule, its integrity (hence 
ensuring it is kept fi rmly locked in the 
cupboard for more years to come).

To address the problem we need 

to communicate the core ideas more 
effectively to both forensic scientists 
and lawyers. Specifi cally, we need to 
ensure that:

a. both the forensic scientists 
and lawyers know when Bayesian 
reasoning should be used.

b. the forensic scientists are able 
to properly articulate the assumptions 
required for a Bayesian analysis.

c. both the forensic scientists 
and lawyers know the difference 
between the assumptions required 
for the analysis (which will generally 
be disputed) and the Bayesian 
calculations that determine the 
conclusions based on the assumptions 
(which must not be disputed).

d. before evidence is used, 
the forensic scientists are able to 
perform the Bayesian calculations 
correctly and effi ciently. The scale 
of this problem has been massively 
underestimated, and as we shall 
explain in this paper, can only 
be resolved by more widespread 
acceptance of the use of tools.

e. the forensic scientists (and 
ultimately the lawyers themselves) are 
able to present the results of Bayesian 
reasoning about evidence in a way that 
is understandable to jurors and other 
lawyers. This is the most diffi cult 
challenge of all since, ultimately 
it will only be achieved once it is 
accepted that we do not actually have 
to reason in court about the results of 
the Bayesian calculations themselves 
(i.e. the calculations are accepted in 
the same way as we might accept the 
results of using a calculator for long 
division[19]).

f. likelihood ratios (or some 
suitable graphical/verbal equivalent 
representation) are used as a 
standard means for stating the value 
of evidence (individually and in 
combination).

To see the extent of how and why 
we have failed to meet the above 
objectives we need only look at the 
range of relevant textbooks:

• There are two standard 
textbooks, [24] and [27], for 

forensic science training. 
Despite its apparently 
encyclopaedic coverage, 
[27] contains nothing at all 
on Bayes and only some 
basic high school material 
on statistics such as graphs 
and bar charts. The book 
[24] does contain a very brief 
introduction to Bayes and the 
likelihood ratio right at the 
end, but without attempting 
to link it in any way to the 
core material of the book 
(so that it appears as an 
afterthought, out of context).

• There is one standard book, 
[37], aimed at forensic 
scientists presenting evidence 
in court. Until its latest 
2010 edition, this book did 
not contain any mention of 
Bayes, likelihood ratios, or 
even probability, and so failed 
to consider such basic issues 
as random match probability 
and the probability that 
tests may have less than 
perfect accuracy (more 
encouragingly, the new 2010 
edition does contain a chapter 
on trace and contact evidence 
[14] that includes a discussion 
of the Bayesian approach).

• There are several excellent 
books that focus on the 
statistical and probabilistic 
aspects of forensic evidence. 
These include [8], [10], [11], 
[13], [18], [21], [28], [29]. 
These books cover exactly the 
right material in depth, and 
they also include introductory 
material on Bayes. However, 
they are most suited for 
people with a statistical or 
mathematical background 
(who wish to fi nd out in detail 
how to properly reason with 
forensic evidence) rather than 
practicing forensic scientists 
lawyers. So, for example, 
even those that are considered 
the most accessible to non-
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experts, namely [8], [18], 

[29], make extensive use 
of formulas and hence 
require a signifi cant level of 
mathematical sophistication. 
The books also tend to focus 
on the details of specifi c 
types of forensics (especially 
DNA).

• There are no suitable relevant 
books we are aware of that 
are specifi cally targeted 
at lawyers. The closest 
would be populist books on 
probability and risk, such 
as [22] and [23], but these 
do not address the issue of 
evidence presentation.

In [19] [20] we argued that it was 
a mistake to assume that any kind of 
Bayesian formulas - such as those 
used in the case of R v Adams (and 
shown in Figure 1) could be presented 
to lawyers and juries no matter how 
‘simple’ they appeared to statisticians.

In the relevant text books 
and papers discussed above the 
best approaches start with visual 
explanations of a very simply instance 
of Bayes (using, for example, tree 
diagrams with frequentist versions 
of the probabilities). However, for 
reasons we will explain in Section 3 
below, these visual approaches do not 
scale up meaningfully in any realistic 
situation. It is at this point that the 
various authors normally resort to the 
formulas instead; hence, this is the 
point that most forensic scientists and 
lawyers never get beyond.

3  Clarifying the notions of 
‘forensic match’ and common 
fallacies

To help readers understand that 
there is a simple unifying way to 

present any kind of forensic ‘match’ 
evidence we use a hypothetical 
(but not unreasonable) example of 
a completely new forensic science, 
which we call ‘stature matching’. 
This avoids the problem of getting 
distracted by the details and biases 
of specifi c areas (such as shoeprint 
matching or DNA matching). This 
approach will enable us to expose 
numerous common misunderstandings 
about the meaning of match evidence 
and that, contrary to what the 
judge ruled in [1] (and indeed what 
forensic many experts assume), it is 
inappropriate to assume that certain 
methods are inherently ‘scientifi cally 
sound’ and others are not.

3.1 A new, but typical, forensic 
science: Stature matching

Our ‘new’ forensic science is 
called “stature matching”. Stature 
matching assumes that, for any 
person, we can measure the following 
features:

• Sex (male, female)
• Height (in centimetres)
• Waistline ((in centimetres)
So each person has their own 

stature profi le such as:
• (male, 131, 65)
The ‘science’ of stature matching 

is the ability to determine a person’s 
stature profi le accurately. They can do 
this either directly by observing and 
measuring the person or indirectly 
from an image of the person. If, for 
example, CCTV captures the image 
of a man at the scene of a crime (we 
can think of the image as a ‘trace’ left 
by the man) then stature matching 
scientists might determine that the 
trace has the following stature profi le:

• (male, 132, 64)
A real person is said to be a 

‘match’ to the stature profi le of the 
trace if the following criteria are 

satisfi ed:
• Sex of the person = sex of the 

trace stature profi le
• Height of the person differs 

from height of the trace 
stature profi le by less than 2 
centimetres

• Waistline of the person 
differs from waistline of the 
trace stature profi le by less 
than 2 centimetres

So, for example, four different 
people with respective stature profi les

• (male, 132, 64)
• (male, 132, 64)
• (male, 131, 65)
• (male, 132, 65)
would all be considered to be a 

‘match’ to the stature profi le (male, 
132, 64), whereas people with the 
following stature profi les would not 
be considered a match:

• (male, 135, 65) - this ‘fails’ 
on height

• (female, 132, 65) – this ‘fails’ 
on sex

Every branch of forensic 
matching that is based on some 
properties of people 2 (be it DNA, 
fi ngerprint, blood type, shoe-print, 
earprint, Gait, voice, ….and any other 
type not yet invented) is based on the 
same underlying principles as stature 
matching:

Specifi cally:
• Every person has a ‘profi le’ 

(defi ned by the area of 
forensics) that can be

• measured by some defi ned 
procedure.

• In certain circumstances a 
person leaves a ‘trace’ (or 
‘print’) of this profi le

• In certain circumstances we 
can measure the profi le of the 
trace that was left.

• There is a criterion for 

V= , 1, 2( | , 1, 2) = ( | ) × 1( 1| ) × 2( 2| ) × ( ) 

Fig 1. Typical Bayesian likelihood ratio calculation. Far too complex for lay people to understand

2 Other types of forensic match 
analysis, such as glass, fibres, 
pollen etc, are not concerned with 
attributes of people and do not 
exactly fi t the same framework. ■
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determining whether a trace 
profi le matches the profi le of 
a person.

The fi rst simple (but extremely) 
important observation to make about 
forensic matching is that (in contrast 
to widely held assumptions) there is 
no defi nitive means for considering 
a forensic matching method to be 
‘scientifi c’ or not. Most people assume 
that DNA is ‘scientifi c’ because the 
measurement and matching criteria 
and protocols are objective and 
reasonably standardised (in contrast 
to those that are widely assumed to 
be ‘non-scientifi c’ like gait analysis, 
face mapping, and fi ngerprinting). 
Yet, our new stature matching 
method is at least as scientifi c as 
DNA in this respect. For example, in 
stature matching we insist on always 
measuring the three specifi c values 
(sex, height, and waistline) and never 
any others; we can always assume 
that the height and waistlines are 
measured without clothes or shoes, 
and we always include the 2cm error 
margins for the match. There is no 
fundamental reason why any forensic 
method cannot in principle be made 
‘scientifi c’.

The second extremely important 
observation to make about forensic 
matching is the following (see [14], 
[26], [34] for a comprehensive 
discussion of this issue):

• A ‘match’ never means a 
unique identifi cation of a 
person.

This is important because the 
assumption of uniqueness is a 
common fallacy arising in DNA, 
fi ngerprint, and many other areas 
of forensics. For example, in R v 
Kempster, EWCA Crim 975 [3] the 
ruling includes the following assertion 
about earprint evidence:

It is clear … that ear-print 
comparison is capable of providing 
information which could identify the 
person who has left an ear-print on a 
surface.

This assertion is highly 
misleading. In fact, when we fi nd a 

‘match’ (be it for stature matching, 
earprint matching, DNA or any of the 
areas of forensics discussed above) 
all we can conclude is that within the 
agreed criteria, the person’s profi le is 
the same as the profi le of the trace. To 
equate this notion with ‘identifi cation’ 
is always fl awed.

An expert in stature matching 
could, in court, present the 
information about a match as follows:

“I am absolutely certain that the 
stature profi le of the trace found at 
the scene is a match of the defendant’s 
stature profi le.”

Instead, the common error made 
by experts is to assert the following:

“I am absolutely certain the 
stature profi le trace found at the scene 
is that of the defendant”

Indeed, this was exactly the error 
made by the expert witness on earprint 
evidence in R -v- Dallagher, EWCA 
Crim 1903 [4]. The judge consequently 
rejected the entire earprint evidence 
as inadmissible. While the judge’s 
ruling was understandable in this 
particular case it would be extremely 
dangerous to interpret this as meaning 
that, unless a ‘match’ is the same 
as an ‘identifi cation’, then match 
evidence can never be admissible. 
For not only would this rule all future 
earprint evidence as inadmissible, it 
would also rule as inadmissible every 
area of forensic match evidence.

3.2 Understanding the Bayesian 
approach to match evidence

In the simplest use of forensic 
match evidence in legal cases we 
assume that a person has left a trace 
at a particular location. Then we have 
the following (continuing with the 
stature matching example):

• Source profi le: This is the 
stature profi le of the trace 
found at the location.

• Target profi le: This is the 
stature profi le of a particular 
person believed (normally 
called the defendant) who 
some believe may have been 
the one who left the trace.

Let us, for the time being, make 

a massive simplifi cation (it turns out 
that it is ONLY for this restrictive case 
that a simple explanation of Bayes 
is possible). We will assume that our 
stature testing is perfect. So, someone 
with type (male, 131, 65) will always 
be tested to be of type (male, 131, 65) 
and someone who is not type (male, 
131, 65) will never be tested to be of 
type (male, 131, 65) .

With the above assumptions our 
typical simple forensic case amounts 
to the following:

• Prosecution hypothesis (H): 
“The target is the source” (i.e. 
the defendant is the person 
who left the trace at the 
scene).

• Defence hypothesis (not H): 
“The target is not the source” 
(i.e. a person other than the 
defendant left the trace at the 
scene).

• Evidence E1: The source 
profi le type is known, say to 
be of type (male, 132, 64). 
For simplicity and generality 
we shall refer to a particular 
profi le as type X.

• Evidence E2: Target profi le 
matches the source profi le 
(i.e. both have type X).

From an evidential perspective, 
the ‘value’ of the evidence is therefore 
completely determined by the 
following two pieces of (probabilistic) 
information:

1. ‘Defence likelihood’: How 
likely are we to see the 
evidence if the defence 
hypothesis is true. In other 
words how likely is it that the 
source and target (defendant) 
are both of type X, if the 
target was not the source.

With the above simplistic 
assumptions, the defence 
likelihood is represented 
by the single branch (H 
false, E1 true, E2 true) in 
Figure 2. Suppose m is the 
proportion of people in the 
population who have type X. 
This is sometimes called the 
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frequency (of the particular 
type) or the random match 
probability (of the particular 
type). So, the defence 
likelihood is equal to m2.

2. ‘Prosecution likelihood’: 
How likely are we to see the 
evidence if the prosecution 
hypothesis is true. In other 
words how likely is it that 
the source and target are both 
of type X if the target is the 
source.

With the above simplistic 
assumptions, the prosecution 
likelihood is represented by 
the single branch (H true, 
E1 true, E2 true) in Figure 
2. Hence, the prosecution 
likelihood is simply equal 
to m (because our testing is 
perfect the target is certain to 
be of type X if the target is 
the source).

So, if the random match 
probability m is equal to 1 in a 100, 
then the prosecution likelihood is 
100 times greater than the defence 
likelihood. In fact, we are 100 times 
more likely to observe the evidence if 
the prosecution hypothesis is true than 
if the defence hypothesis is true.

The likelihood ratio (the 

prosecution likelihood divided by the defence likelihood) is simply the 
mathematical formalism that expresses exactly this intuitive information.

The likelihood ratio is very well-suited to the legal context because it 
enables us to evaluate the impact of the evidence without having to specify 
what our prior belief is in the prosecution or defence hypothesis. What Bayes 
theorem additionally tells us is that, whatever our prior odds were for the 
prosecution hypothesis, the result of seeing the evidence is such that those odds 
are multiplied by the likelihood ratio3:

Posterior odds = Likelihood ratio × Prior odds
So, according to Bayes, if we started off assuming that the odds in favour 

of the defence hypothesis were 1000 to 1, then the ‘correct’ revised belief once 
we see the evidence is that the odds still favour the defence, but only by a factor 
of 10 to 1:

3 Note the following (which we will assume later): If we assume that the 
prior odds are ‘evens’ i.e. 50:50 then the posterior odds will be the same as 
the likelihood ratio. Also odds can easily be transformed into probabilities: 
specifically, if the odd are x to y for hypothesis H over not H then the 
probability of H is x/(x+y) and the probability of not H is y/(x+y). So odds 
of 100 to 1 in favour of H means the probability of H is 100/101 and the 
probability of not H is 1/101. ■

Prior odds Likelihood ratio 

=
Posterior odds 

Prosecutor 1 100 1
Defence 1000 1 10 

And if we started off assuming that the odds in favour of the defence 
hypothesis were 4 to 1, then the ‘correct’ revised belief once we see the 
evidence is that the odds now favour the prosecution by a factor of 25 to 1:

Prior odds Likelihood ratio 

=
Posterior odds 

Prosecutor 1 100 25
Defence 4 1 1 

H

Probability =m

Probability =1-m
true

false

H: target = source E1: source is type X

E1

E1

true

false

Probability =m

Probability =1-m

true

false

(Not considered)

(Not considered)

Probability = 1

Probability =0

true

false

(Not considered)

E2: target is type X

E2

E2 Probability =m

Probability =1-m

true

false

(Not considered)

Probability =m

Here m is the proportion of 
people who have type X Prosecution likelihood

Defence likelihood

Probability = m

Probability = m2

Fig 2. Determining the possible scenarios and likelihoods in simple case
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But why should we accept that 
Bayes is the ‘correct’ interpretation? 
The standard way to convince lay 
people that Bayes is correct is to 
consider examples (often called the 
‘Island’ example) like the following:

Example 1: Suppose that, 
in addition to the defendant, 
it is known that another 1,000 
other people were in the 
vicinity of the crime scene4 – 
see Figure 3. Then our prior 
assumption, i.e. what we 
should assume before any 
evidence has been presented, 
is that any one of these other 
people is just as likely to be 
the person who left the trace 
as the defendant. So the prior 
odds are 1000 to 1 in favour 
of the defence hypothesis (or 
equivalently the probability 
that the defence hypothesis 
is true is 1000/1001). Since 
the random match probability 
is 1/100, we expect about 
10 of the other 1000 people 
to have the type X. So, once 
we observe the evidence 
(defendant is type X) we 
can rule out all other people, 
except those 10, as having 
possibly left the trace. So, 
after observing the evidence 
the defendant and 10 others 
remain as possibilities. So the 
revised odds are now 10 to 1 
in favour of the defendant (or 

1001 People at scene

defendant others
1 1000

Type X

10

People who have type X are ringed (total 11)

Type X

1 0

Not Type X Not Type X

990

Fig 3. Bayes calculation explained visually

equivalently the probability 
that the defence hypothesis 
is true is now 10/11). So, 
although the odds still favour 
the defence hypothesis the 
odds have swung by a factor 
of 100 (the likelihood ratio) 
towards the prosecution 
hypothesis.

If we change the number 
of people we start with the 
odds still always swing by a 
factor of 100 (the likelihood 
ratio) towards the prosecution 
hypothesis. So, if there were 
500 other people then we 
expect about 5 to have the 
same stature type. So the 
prior odds, which in the case 
are 500 to 1 in favour of the 
defence, drop to 5 to 1 after 
observing the evidence

If there were just 10 other people 
then the use of population diagrams 
such as in Figure 3 to represent Bayes 
becomes diffi cult because, in this 
case, the expected number of people 
who match is a fraction (one tenth) 
of a person. From a mathematical 
perspective this is not a problem: the 
prior odds are 10 to 1 in favour of the 
defence. After the evidence there is 
just 1/10 of another person other than 
the defendant. So the odds are now 
10 to 1 in favour of the prosecution 
hypothesis. The swing is still a factor 
of 100 toward the prosecution. But 
this example shows that, even with 

the most simplistic assumptions we 
have made the standard explanation 
of Bayes and likelihood ratios may 
not be easily understandable to lay 
people. Because many types of 
forensic science (such as DNA) have 
very low match probabilities, it is 
inevitable that we have to consider 
‘fractions’ of people if we adopt 
this approach. The trick to gaining 
acceptance from lay people is 
therefore to use hypothetical examples 
that do not involve fractions, and then 
explain that exactly the same method 
works no matter what the actual 
match probabilities are.

3.3 Exposing some common 
misunderstandings

Before tackling the core problem 
of what constitutes ‘statistically 
sound’ evidence it worth noting that 
the framework we have provided 
makes it easy to expose three common 
misunderstandings in probabilistic 
reasoning about evidence:

When likelihood ratios can and 
cannot be multiplied

The practice of multiplying 
likelihood ratios was explicitly 
criticised in [1]. The error in the ruling 
was the failure to understand and 

4 In the standard ‘Island problem’ 
presentation it is assumed that 
the crime was committed on an 
island and that, in the absence of 
evidence, all residents are equally 
likely suspects. ■
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distinguish between the circumstances 
when multiplying likelihood ratios 
was and was not the correct thing to 
do.

When there are two pieces 
of independent evidence then 
multiplying likelihood ratios is the 
only correct way to reason about the 
impact of the combined evidence. 
To see why, suppose, that in addition 
to a match of the defendant’s stature 
profi le, we also discover a match 
of hair colour; the defendant and 
the person at the scene have brown 
hair. Suppose that the random match 
probability for brown hair is 1 in 
5. Then the evidence in this case is 
that the stature profi le and the hair 
profi le of the defendant both match 
that of the person who left the trace 
(in the form of a CCTV image) at the 
scene. Since stature and hair colour 
can be considered independent, the 
probability of seeing both matches 
given that the defendant was not 
the person who left the print is the 
product of the two random match 
probabilities, i.e. 1/500. Hence the 
likelihood ratio is now 500. Assuming 
there are 1000 other people who 
were at the scene, it follows that 10 
of these is likely to have the same 
stature profi le as the defendant and 
of those 10 two are likely to have the 
same hair colour as the defendant. 
This means the odds in favour of the 
defence hypothesis have come down 
from 1000 to 1 to 2 to 1. That is a 
factor of 500, which is equal to the 
product of the two likelihood ratios 
(100 times 5).

So, when two pieces of 
evidence are genuinely independent 
it would, contrary to the ruling in 
[1], be irrational not to multiply 
the likelihoods - even for such 
‘unscientifi c’ forensics as stature 
matching and hair colour.

However, the ruling against 
multiplying likelihood ratios is 
perfectly justifi ed if the defence 
was unable to demonstrate that the 
underlying pieces of evidence were 
independent. If, for example, instead 

of hair colour we chose ‘weight’ it 
would certainly be wrong to conclude 
that weight was independent of 
stature. In such circumstances there 
are standard, but different, Bayesian 
calculations that need to be used 
(we have to consider explicitly the 
probability of one piece of evidence 
given the other). But such a scenario 
already puts us into the realms of 
problem complexity beyond which it 
is reasonable – or even possible – to 
perform manual calculations that lay 
people would be able to understand 
intuitively.

Fallacy of the transposed 
conditional.

This occurs when the defence 
likelihood, i.e. the probability of 
seeing the evidence given the defence 
hypothesis, is wrongly assumed to be 
equivalent to the probability of the 
hypothesis given the evidence.5

So, suppose we know that the 
defence likelihood is 1/100. By 
wrongly assuming this is the same as 
the probability of the hypothesis given 
the evidence, a prosecutor might state

• “The probability the 
defendant was not at the 
scene given this match 
evidence is 1 in 100”

In fact, if our prior was 1000 to 1 
in favour of the defence hypothesis (as 
in Example 1 above) it turns out that 
what should have been stated was:

• “The probability the 
defendant was not at the 
scene given this match 
evidence is 10 in 11”

The danger of reading too much 
into very low match probabilities

For DNA the probability is 
normally presented as being so low 
(for example, 1 in 2 billion) that is it 
as ‘good as’ equal to zero6 and hence 
a match is (wrongly) considered as 
a unique identifi cation. In the case 
of fi ngerprints the situation is even 
worse, since there is still a strong 
assumption by many that a match is, 
by defi nition, a unique identifi cation 
(i.e. the random match probability is 
assumed to be equal to zero).

Recent research, such as 
[16], has exposed this fallacy for 
fi ngerprint evidence and this was 
best exemplifi ed by the dramatic 
Mayfi eld case [6] where a fi ngerprint 
match was subsequently discovered 
not to be that of the defendant. 
Primarily on the basis of this instance 
of a known match ‘error’, a State 
of Maryland Court subsequently 
ruled that fi ngerprint evidence was 
not admissible in a totally unrelated 
murder case [7]. If that way of thinking 
was applied to DNA or any other 
type of forensic evidence, then any 
example of a ‘match’ in which the 
person deemed matching was NOT 
the one who left the ‘print’, would 
be justifi cation for rejecting as 
inadmissible the whole of that fi eld of 
forensic evidence.

4  The irrational notion of 
‘statistically sound’ evidence

Having dealt with some of the 
misunderstandings and fallacies in 
rulings such as [1] we now turn to 
the most critical and challenging 
misunderstanding that lies at the 
heart of the ruling: the assumption 
that the random match probability is 
‘statistically sound’ for some areas of 
forensic science and not others. We 
again expose the weakness of this 
assumption by using our hypothetical 
stature matching example.

For any forensic science the 
match probability is based on some 
database of profi les. For our new 
science of stature matching we 
therefore need a database of people’s 
stature profi les. For a particular 

5  So,  us ing the  language of 
statisticians P(H|E) is wrongly 
assumed to be equal to P(E|H) 
hence why it is referred to as 
transposing the conditional.

6 This is especially true of the FBI 
in the US. In the UK the Forensic 
Science Service no longer assumes 
this, although lay people and many 
lawyers do. ■
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profi le, say (male, 132, 64), we simply 
count the frequency of profi les in the 
database that would be classifi ed as 
a match to this profi le. So this would 
include profi les like: (male, 132, 64), 
(male, 131, 65), (male, 132, 65), etc. 
If there are 1000 such matches in a 
database of 100,000 then we can say 
that the random match probability is 1 
in a hundred, or equivalently 0.01.

The ‘reliability’ of the database 
could, of course, be questioned 
on numerous grounds such as the 
following:

• If the crime happened in the 
UK and the database comes 
from the USA then it may not 
be representative; perhaps 
people in the UK are smaller

• If it is known that the person 
who left the print was 
defi nitely a man then perhaps 
we should we consider only 
a database containing stature 
profi les of men.

• If it is known that the person 
who left the print was 
defi nitely Caucasian, then 
perhaps we should consider 
only a database containing 
stature profi les of Caucasians.

• If we are ‘90%’ sure that 
the person who left the print 
walked with a limp, then 
perhaps we should consider 
only a database in which 90% 
of the stature profi les belong 
to people who walk with a 
limp

• Etc.
Clearly even if we were able to 

change to a more ‘representative’ 
database or restrict the existing 
database to people with the relevant 
criteria (and normally this is not 
possible because the database will 
only contain the stature profi les 
and few other details) the random 
match probability will also change. 
Hence it is impossible to assume 
that there is a truly objective random 
match probability (what makes a 
measurement objective or subjective 
is the supposed level of rigour of 

the measurement instrument). But, 
all of these issues are inevitable for 
any database for any area of forensic 
science. In other words there are no 
objective criteria by which our stature 
matching database could be ruled 
as any less ‘reliable’ than the most 
sophisticated DNA database7. This 
fi ctional example exposes exactly 
the kind of questions that need to be 
asked about any forensic database 
(including DNA databases), but which 
rarely are. Indeed, as described in [13] 
and [17], because of very different 
databases and different assumptions 
about how to use them, DNA experts 
in the UK and the USA report very 
different random match probabilities 
for the same person (often many 
orders of magnitude different such as 
one in a billion compared to one in a 
trillion). These differences, even when 
the probabilities are so low, matter 
greatly as we have already shown (and 
matter even more when we factor in 
the possibility of testing errors as we 
show in the next section).

Contrary to what was argued in [1] 
the ‘statistical base’ for determining 
the defence likelihood in stature 
matching is no less well defi ned than 
it is it for DNA. In fact it is actually 
much easier to get a relevant database, 
easier to do the matching, and easier 
to explain to a jury precisely what the 
match probability means. The match 
probabilities are as well defi ned (in 
fact less subjective) than those in the 
‘mature’ science of DNA.

The ‘scientifi c’ quality or 
maturity of the type of forensic 
science being considered is therefore 
irrelevant as far as the statistical 
argument is concerned. The level of 
‘scientifi c’ or ‘statistical’ quality is 
certainly not synonymous with very 
low defence likelihood fi gures. This 

7 It is, of course, important to note that the databases that provide a basis for 
the frequency statistics for DNA cases are far more comprehensive than for 
most other areas of forensic science, and this is presumably what the Judge 
in R v T was recognising. However, that does not alter the fact that DNA is 
not inherently more or less scientifi c than other areas of forensics currently 
lacking extensive databases. ■

point is important because there is a 
misconception that DNA evidence 
is scientifi c because it produces very 
low defence likelihood fi gures, while 
earprint or footprint evidence is less 
scientifi c because it rarely produces 
very low defence likelihoods. The 
value for the defence likelihood 
actually has nothing to do with the 
reliability of the data.

What matters is that in all cases 
of a match (whether it be DNA, 
fi ngerprinting, footprints, earprints, 
stature matching or anything else) 
the expert should be obliged to 
present the random match probability 
(possibly as a range) along with a 
statement about the limitations of the 
underlying data. For example,

• “The probability of fi nding 
this match in a person who 
was NOT the one who left 
their stature print at the scene 
is between one in a thousand 
and one in two thousand. 
This fi gure is arrived at from 
a database of 100,000 stature 
profi les of which 150 match 
the print at the scene.”

The defence likelihood is 
inevitably a statement of subjective 
probability, as is any statement 
involving uncertainty.

So, given that there is no rational 
basis for declaring DNA ‘statistics’ 
as more ‘scientifi c’ than any other 
type of forensic match evidence, the 
prohibition from using likelihood 
ratios and Bayes on all but “DNA (and 
possibly other areas where there is a 
fi rm statistical base)” [1] makes no 
sense. The only consistent strategy 
would be to either allow its use for all 
forensic match evidence or to ban it 
for all (including DNA).

Clearly our argument is that the 
former should apply. To support this 
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we can point to the examples we 
have already provided where Bayes 
provided the correct results that 
match our intuition. But an even more 
convincing argument is to show that 
banning it for all arguments would 
mean that we would have to reject all 
statistical analysis as the following 
example should make clear:

• Example Case 1: A man 
is charged with a gaming 
offence, specifi cally that he 
was using a rigged coin when 
taking bets on whether the 
coin he was tossing comes up 
Tails. The defence hypothesis 
is that it was a fair coin. The 
prosecution hypothesis is that 
the coin was double-headed 
(so the punters were always 
sure to lose). The evidence 
E is that the coin landed as 
Heads on 9 out of 9 plays.

The point about this example is 
that the evidence is not only purely 
statistical, but that the statistics 
involved – coin tossing – allow us 
to use classic frequentist analysis 
and hence avoid any debates 
between Bayesian and non-Bayesian 
statisticians. Thus, everybody will 
certainly agree on the following:

• The defence likelihood is 
1/512 (a half to the power 
of 9) because that is the 
probability of seeing 9 out 
9 Heads given that the coin 
is fair. This analogous to the 
random match probability in 
a forensic case.

• The prosecution likelihood 
is is equal to 1, because that 
is the probability of seeing 
9 out 9 Heads given that the 
coin is double-headed.

It is clear that the evidence 
favours the prosecution hypothesis 
more than the defence hypothesis. 
Moreover, the likelihood ratio of 
512 can be proved to be the ‘correct’ 
factor in favour of the prosecution 
hypothesis. For, suppose that before 
the game was played a double-
headed coin was added to a bag of 

1000 coins that were known to be 
fair. Suppose also that the coin played 
in the game was selected randomly 
from this bag. Then before we see 
the evidence the odds must favour 
the defence hypothesis by a factor of 
1000 to 1 (these are just the odds of 
selecting the double-headed coin). We 
know that there is a 1 in 512 chance 
of tossing 9 out of 9 heads in a fair 
coin. So, having seen the evidence 
the odds are 1000 to 512 (i.e. about 
2 to 1) that the coin chosen was a 
fair coin. So, the evidence increases 
the odds in favour of the prosecution 
hypothesis by a factor of 512, but the 
defence hypothesis is still more likely. 
Hence, any rational juror should not 
convict the defendant on the basis of 
this evidence alone. Think of it this 
way: The chance of getting 9 Heads 
in 9 tosses of a fair coin (defence 
hypothesis) is still higher than the 
chance of selecting the one double 
headed coin from a bag of 1001 coins 
(prosecution hypothesis).

There is no dispute, therefore, 
that in the above hypothetical legal 
case the use of likelihood ratios and 
Bayes leads to the undisputedly 
correct conclusion. There is no 
‘statistical doubt’ at all. Why is 
this important if the case is purely 
hypothetical? The answer can be 
gleaned by changing the assumptions 
very slightly. The assumption that a 
‘fair’ coin has a probability of ½ of 
landing on Heads is a simplifi cation. 
Even if we have no reason to believe 
there are double-headed coins in 
circulation the actual frequency of 
heads tossed in all coins in circulation 
is not a number that can be practically 
determined, and even if we had a very 
large datatabase of coins and toss 
results on them, it would certainly not 
be exactly equal to ½. These minor 
additional assumptions of reality, 
already shift us out of the ‘purely 
statistical’ scenario. Do these changes 
mean that our approach to evaluating 
evidence using likelihood ratios is 
no longer valid? Of course not. The 
exact same methods apply. All that 

has changed is our confi dence in the 
original assumptions. We counter 
this uncertainty not by declaring the 
calculus of probability as invalid 
but by either stating our uncertainty 
clearly up front or using ranges 
instead of exact values.

All evidence in any case 
ultimately has a ‘statistical basis’. 
The ‘soundness’ of the statistical 
basis is a spectrum where examples 
like that of case 1 above just happen 
to sit fi rmly at the ‘soundest’ end. 
The rationale for the ruling in [1] is 
not just that that there is some point 
at the opposite end of the spectrum 
at which the use of likelihood ratios 
become inappropriate, but that most 
types of forensic match evidence 
are even further beyond this point 
of the spectrum. Readers may yet be 
unconvinced that the minor change 
in the example already discussed 
is insuffi cient to push the example 
beyond this point, but surely the 
following leaves no doubt.

• Example Case 2: This case is 
the same as case 1, except for 
the fact there is no possibility 
that the coin was double-
headed because the defendant 
clearly showed the coin to 
have a head and tail before 
tossing it. The prosecution 
hypothesis here is simply 
that the coin is ‘biased’ – i.e. 
will in the long run produce 
a greater ratio of Heads than 
Tails. It is still an offence to 
knowingly use such a coin. 
It is not known exactly what 
this bias is, but it is known 
that a magic shop in the area 
was selling special coins that 
looked real but were biased. 
These coins were all made 
with a different weighting 
and all that can be said with 
reasonable certainty was 
that the range of Heads 
‘bias’ in these coins was 
between 0.6 and 0.7. The 
prosecution hypothesis is that 
the defendant used one of the 
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coins from this magic shop.
The evidence of 9 Tails in this 

example case has less ‘statistical 
soundness’ than the evidence of a 
stature match (or indeed any type 
of forensic match) in the previous 
section. Yet, it is easy to see that the 
use of likelihood ratios can be applied 
just as rationally in this example as in 
example case 1. Specifi cally:

The defence likelihood is the 
probability of seeing 9 Heads in 9 
tosses given that the coin is fair. We 
cannot assume that the probability of 
tossing a Head on a fair coin is exactly 
½. If we have a database of what are 
believed to be fair coins in which the 
lowest frequency of heads is 0.495 
and the highest frequency is 0.505 
then we could consider a range for 
the defence likelihoods using these as 
assumptions that are respectively least 
and most favourable to the defence 
hypothesis. So the least favourable is 
0.00178 (that is 0.495 to the power of 
9) and the most favourable is 0.002136 
((that is 0.505 to the power of 9).

The prosecution likelihood is the 
probability of seeing 9 out of 9 Heads 
given that the coin is biased. Here we 
have an infi nite number of different 
prosecution hypotheses corresponding 
to every potential number between 0.6 
and 0.7. Taking just the two extremes 
as those being respectively least and 
most supportive of the prosecution 
hypothesis we end up with respective 
prosecution likelihoods of 0.01 (that 
is 0.6 to the power of 9) and 0.04 (that 
is 0.7 to the power of 9) .

Despite the ‘unscientifi c’ nature 
of the evidence, we can conclude that, 
with the assumptions that most favour 
the prosecution, the likelihood ratio 
is 22.5 (0.04 divided by 0.00178), 
while with the assumptions that most 
favour the defence the likelihood ratio 
is 4.7 (0.04 divided by 0.00178). So, 
despite the clear lack of ‘statistically’ 
sound evidence, we can rationally 
conclude that the odds in favour 
of the prosecution hypothesis have 
increased by a factor of between 
4.7 to 22.5. Indeed that is the only 

rational conclusion to make.
If the evidence made by either 

an expert or a member of the jury 
does not lead to the conclusion that 
the evidence supports the prosecution 
hypothesis by a factor of at least 4.7 
to 1, assuming the most optimistic 
defence assumptions, then such a 
conclusion is irrational. If, as the 
ruling in [1] suggests, the use of 
likelihood ratios to explain the impact 
of this kind of evidence was not 
allowed in court, then the jury would 
be expected to do their own reasoning. 
This would mean, for example, that it 
would be acceptable to conclude that 
the evidence actually supported the 
defence by a factor of 100 to 1 if that 
is what their own ‘method’ led them 
to conclude.

Having, hopefully, countered the 
argument against using Bayes for 
‘non-scientifi c’ statistical evidence, 
we next return to the crucial issue of 
why Bayesian reasoning has failed 
to make an impact on ‘non-scientifi c’ 
forensic match evidence.

5  Moving to more realistic 
assumptions: why the R v T 
ruling was understandable

Recall that the assumption of 
perfect testing accuracy, used so 
far in our forensic match evidence 
examples, means that:

• Someone with type X will 
always be tested to be of 
type X. This means that there 
is zero probability of false 
negatives:

• Someone who is not type X 
will never be determined to 
be of type X. This means that 
there is zero probability of 
false positives:

In the case of stature matching 
neither of these assumptions is at all 
realistic, as they would require all of 
the following to hold:

• Stature traces (taken either 
from the crime scene or taken 
directly from the defendant) 
are always ‘perfect’ (so, 

for example, there is no 
possibility that distortion 
of the photographic/video 
evidence is such that the 
person’s height could 
be determined to be 136 
centimetres as opposed to 
132 centimetres).

• The process of analysing the 
stature trace is infallible (so, 
for example, it is impossible 
for one stature expert to 
determine from a photo that 
the person is a man and for 
a different stature expert to 
determine from the same 
photo that the person has is a 
woman.

• Stature prints can never be 
tampered with before they 
are examined by the expert.

• A person’s stature profi le 
can never change (so, for 
example, if their waistline 
was 65 centimetres at 
the time they made the 
print, then when they are 
subsequently tested their 
waistline will inevitably be 
within 2 centimetres of 65 
centimetres).

But these assumptions (especially 
the fi rst three) are even more dubious 
in the case of DNA evidence than in 
the case of stature matching. If any 
of these statements is not true then 
neither the false negative probability 
nor false positive probability will be 
zero.

Yet, while it is accepted that 
random match probabilities need to be 
‘statistically sound’ the same is never 
demanded of the probabilities of false 
positives and false negatives. Indeed, 
in many analyses they are simply (but 
wrongly) assumed to be zero, while 
in others (including DNA analyses) 
they are simply stated as subjective 
estimates. This prompted the authors 
in [36] to ask pointedly:

• “Why are the two possible 
sources of error in DNA 
testing treated so differently? 
In particular, why is it 
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considered essential to 
have valid, scientifi cally 
accepted estimates of the 
random match probability 
but not essential to have 
valid, scientifi cally accepted 
estimates of the false positive 
probability?”

The authors in [36] provide a 
strong argument on why it is just as 
critical to include the false positive 
probability as the random match 
probability. However, their omission 
of the case for the false negative 
probability (presumably because they 
only consider the scenario where 
there have been positive tests for 
both the source and target) is itself 
an oversight. Even assuming that 
both tests are positive, the Bayesian 
reasoning still requires us to know the 
probability of a true positive (which is 
equal to one minus the probability of 
a false negative, as shown in Table 1). 
The calculations in [36] assume that 
the true positive probability is 1 (and 
hence the false negative is 0). This 
is unrealistic. By assuming the more 
realistic assumption of non-zero false 
negative probability we allow for the 
scenario in which it is possible that 
some other suspect with profi le type 
X was never considered because they 
were wrongly tested as not being type 
X.

It follows that, as soon as we 
drop our assumption about ‘perfect 
testing’ (as in practice we surely 
must), then the notion of a sound 
‘statistical base’ for DNA compared 
with other types of forensic evidence 
becomes even more blurred than we 
previously explained, since there 
is no ‘statistically sound’ base for 
determining the error probabilities 
in DNA testing. If anything it will 
surely be easier and more objective to 
determine the values and exact causes 

of false positive and false negative 
errors for stature matching than it 
would be for DNA. It would also be 
easier to explain to a jury precisely 
what these errors are.

It should be clear now, 
conceptually, that there is no more 
justifi cation for using the probabilities 
that arise from DNA as there is in 
using the probabilities that arise from 
just about any other type of forensic 
match evidence.

However, it turns out as we show 
in the next section, that as soon as we 
incorporate the potential for testing 
error in a Bayesian argument things 
become complex. It is not clear, 
for example, that these issues were 
properly addressed for the footwear 
evidence that was the subject of 
the R v T ruling, and this possibly 
makes the judge’s lack of trust in 
the transparency and accuracy of the 
results of the Bayesian analysis more 
understandable.

6  The problem with scaling up 
Bayesian arguments

In [35] the authors state:
• “The best argument for the 

application of Bayesian 
theory in forensic science is 
to show that the theory agrees 
with personal intuitions, 
when inference problems 
are simple and intuitions 
are reliable, and that it helps 
to go beyond them, when 
problems become more 
complicated and intuitions 
are not so reliable.”

This is exactly the strategy we 
have suggested. The problem with 
this strategy is that as soon as we 
recognise that the false positive and 
false negative probabilities may 
not be zero, the ‘simple’ problem 

actually becomes very diffi cult to 
explain using the intuitive, tree-
diagram approach. In fact, although 
several authors have tried it, we 
are not aware of the problem being 
presented correctly in any way 
other than by using the formulaic 
approach. And, even then, the 
presentations fail to include the false 
negative probability. The net effect 
is that, unless people are prepared 
to understand the formulas they will 
not be able to see that the theory 
agrees with personal intuitions even 
in the ‘simple’ problem case. This 
goes some way to explaining why the 
basic misunderstandings discussed in 
Section 3 persist in the law.

To explain what the problem 
really is and how we might solve it, 
let us review the relevant information 
we have to consider for any forensic 
match case when the testing cannot be 
assumed to be perfect:

• Prosecution hypothesis (H1): 
“The target is the source” 
(unchanged)

• Defence hypothesis (not 
H1): “The target is not the 
source” (unchanged)

• Evidence E1: “The source 
profi le is tested to be of type 
X” (note: we can no longer 
assume the source profi le 
actually is type X)

• Evidence E2: ”The target 
profi le is tested to be of type 
X (note: we can no longer 
assume the target profi le 
actually is type X)

Because of the probability of false 
positives we cannot assume from the 
above evidence that either the source 
or the target have type X. Instead 
these assertions are also unknown 
hypotheses:

• Source type hypothesis (H2): 
“The source profi le really is 
type X” (true or false)

• Target type hypothesis (H3): 
“The target profi le really is 
type X” (true or false)

What we have, therefore, is a 
problem involving fi ve ‘variables’ H1, 

Table 1. Error probabilities

Actual Type Not X Not X X X
Test result Not X X X Not X

(True negative) (False positive) (True positive) (False negative)
Probability 1-u u 1-v v

FORENSIC SCI SEMNorman Fenton. On Limiting the Use of Bayes in Presenting Forensic Evidence. FORENSIC SCI SEM, 2014, 4(1): 8-23
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H2, H3, E1, E2 which can all be true 
or false (in order to do the necessary 
Bayesian reasoning). But this means 
there are 32 different scenarios 
representing the different possible 
true/false combinations (although 
some are ‘impossible’ and some are 
not observed, such as false values for 
the evidence). We can show this in a 
tree diagram - Figure 4 - but of course 
it is now far more complex than 
before; possibly too complex for lay 
people to understand.

Even when we ignore the 
impossible branches and all the 
scenarios in which the evidence E1 
and E2 is false, we are left with six 
scenarios that need to be incorporated 
in the likelihood calculations:

• Scenario 1 (this is the 

‘normal’ prosecution 
scenario) in which H1, H2, 
H3, E1 and E2 are all true. 
This scenario has probability 
m(1−v)2

• Scenario 2 (this is an often 
ignored prosecution scenario) 
in which H1 is true (the target 
is the source) but the target is 
not actually type X. Both the 
test of the target and source, 
however, incorrectly result 
in an X. This scenario has 
probability (1−m)u2.

• Scenario 3 (this is the 
‘normal’ defence scenario) 
in which the tests are correct 
but the match is coincidental. 
This scenario has probability 
m2(1−v)2.

• Scenario 4 this is the defence 
scenario in which the target 
is incorrectly tested to be 
type X. This scenario has 
probability m(1-m)(1−v)u.

• Scenario 5 this is the defence 
scenario in which the source 
is incorrectly tested as type X. 
This scenario has probability 
(1-m)mu(1−v).

• Scenario 6 this is an often 
ignored defence scenario in 
which both the source and 
target are wrongly tested 
to be X. This scenario has 
probability (1−m)2u2.

The prosecution likelihood is the 
sum of the probabilities for scenarios 
1 and 2, while the defence likelihood 
is the sum of the probabilities for 
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false
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true

false
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true
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Cases of E1, E2 false not considered
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Prob =m

Prosecution likelihood

Defence likelihood

m(1-v)2

E1: source 
tested
as type X

E2: target 
tested
as type X

H3

H3

Prob =1

Prob =0

true

false

E1

E1

Prob =0

Prob =1

true

false

E1

E1

Prob =m

Prob =1-m

true

false

E1

E1

Prob =m

true

false

E1

E1Prob=1-m

E2true

Prob =1-v

true

Prob =1-v

Impossible

Impossible

E2true

Prob =u

true

Prob =u

E2true

Prob =1-v

true

Prob =u

m is the random match probability for type X
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Fig 4. Bayes calculation explained visually (but this time possibly too complex to understand)
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scenarios 3, 4, 5, and 6.
The problem is that the 

likelihoods, and hence also the 
resulting likelihood ratio, are not 
suffi ciently ‘simple and intuitive’ to 
ensure that people can check they 
‘agree with personal intuition’ (which 
is why it is not even worth the effort 
here of going through the motions). 
Resorting to the Bayes formulas, 
of course, only makes things much 
worse.

The example also shows that, 
even for experienced Bayesians, it 
can be diffi cult to model the problem 
in this way and diffi cult to perform 
the calculations (as we argued earlier, 
we have not previously seen a full 
solution of this problem taking into 
account both error probabilities). 
And this example still has many 
simplifi cations: it assumes that all 
three probabilities (random match, 
false positive, false negative) are all 
‘point’ values, whereas in practice 
they would be uncertain distributions 
[11]; it assumes that all variables have 
just two possible values (true and 
false); it assumes that there is just 
one print; and it assumes the only 

evidence is the match evidence. When 
we include further aspects of reality 
(especially including multiple, related 
pieces of evidence) the possibility 
for producing the correct Bayesian 
calculations manually (with or 
without formulas) – let alone being 
able to explain them to a lay person – 
are non-existent.

In our view the best way to 
minimise this problem is to use 
Bayesian networks (as explained 
in [19] [25] [35]). By exploiting 
assumptions of independence between 
variables, a Bayesian network (BN) 
model is typically compact and 
effi cient, since it avoids the problem 
we saw above whereby we had to 
consider all possible combinations of 
variable values (statisticians express 
this formally by saying that ‘it is not 
necessary to consider the full joint 
probability distribution’).

A BN (see Figure 5) is a graphical 
model that shows the dependency 

relationships between the unknown 
variables of interest (each variable is 
represented by a node in the graph).

In addition to the graphical 
structure we defi ne, for each node, 
a probability table that defi nes the 
probability values for the node given 
the different combinations of parent 
states. For example, the probability 
table for node “target tested as X” 
simply encodes the error rates as 
shown in Table 2.

It is much easier to build and 
run this model with the relevant 
information than it is to either 
construct a tree as before or to 
produce the necessary formulas. Once 
built we can enter evidence and get 
the calculations immediately as shown 
in Figure 6 (this shows the results 
using a standard BN tool). Here we 
actually compare the results under 
two different sets of assumptions:

• In a) we encoded the 
assumption of perfect testing 

The defendant Joe Bloggs 
was the person who left 
the trace at the scene. This 
is the prosecution 
hypothesis: (true or false)

The defendant Joe Bloggs 
actually has stature profile 
(male, 132. 64). This is a 
hypothesis (true or false)

The stature profile of the 
trace left at the scene 
actually is (male, 132. 64). 
This is a hypothesis (true 
or false)

The stature test result on Joe 
Bloggs shows a  stature 
profile of (male, 132. 64). 
This is an observation The stature test result on 

the trace left at the scene 
shows a  stature profile of 
(male, 132. 64). This is an 
observation

Fig 5. Bayesian network solution to the problem (with an example showing what the nodes would mean for a specifi c stature matching case)

Table 2. Probability table for node "target tested as X"

Target is type X False True
Target tested as X (False) 1-u v
Target tested as X (True) u 1-v
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accuracy (i.e. u and v are 
both set to zero).

• In b) we encoded the 
assumption that u (false 
positive) is 0.1 and v (false 
negative) is 0.01.

Although in both cases we 
assume the same match probability 
(1/100) and the same prior (50:50)8 
for the prosecution hypothesis (“target 
is source”) the difference is quite 
dramatic. Although the evidence is 
identical in both cases, in the former 
t posterior odds9 are 100 to 1 in 
favour of the prosecution hypothesis, 
whereas in the latter the posterior 
odds10 are only 65 to 35 (i.e. about 
2 to 1) in favour of the prosecution 
hypothesis.

Not only does the BN remove 
the need for performing the diffi cult 
Bayesian calculations manually, but 
its graphical representation is easy 
for a lay person to understand. We are 
not, however, suggesting that the BN 
model is what should be presented 
court. It should be used for pre-trial 
analysis of the evidence by forensic 
experts, preferably using different 
scenarios for the different ranges 
of match probabilities and error 
probabilities. The model structure 

8 Recall that, by assuming a 50:50 prior, we know that the posterior odds are 
equal to the likelihood ratio..

9 The likelihood ratio is 100, meaning equivalently the probability the 
prosecution hypothesis is true is 100/101 = 99.01%)

10 The likelihood ratio is 65/35, meaning equivalently the probability the 
prosecution hypothesis is true is 65%). ■

should be agreed between legal teams 
and forensic experts on both sides. 
All that should be presented in court 
are clear statements of the prior 
assumptions being used (the match 
probabilitity, and error probabilities) 
and the results of the calculations 
under the different assumptions.

A detailed history of BNs in 
legal reasoning, along with proposed 
mechanisms for using them in 
practice can be found in [19] and [20]. 

7  Conclusions and 
recommendations

The ruling in R v T displayed 
some fundamental misunderstandings, 
including assertions that can be 
shown to be either illogical or 
irrational. However, the presentation 
of the Bayesian argument and 
likelihood ratios in the original case 
was both inadequate and inaccurate, 

as it has been in many similar cases. 
We have argued that this may be, 
in large part, due to the continued 
failure of the statistical community 
to provide the necessary support 
to forensic scientists and lawyers. 
That fundamental probabilistic 
reasoning should have therefore been 
discredited in the R v T ruling is hard 
for statisticians to take but, even in 
our view as Bayesians, was totally 
understandable.

If statisticians continue to 
believe that the way to explain their 
arguments in legal reasoning is by 
using fi rst principle calculations and 
formulas, then the future for Bayes in 
the law is doomed.

The challenge over the next few 
years is to get to the situation whereby 
everybody in the legal system 
understands the difference between

a. the genuinely 
disputable assumptions 

a) Impact of evidence when error probabilities are 
assumed to be zero 

 b) Impact of evidence when false positive rate is 
0.1 and false negative is 0.01  

Fig 6. Comparing the different impact of the evidence when we assume different error rates (in both cases the match probability is 1/100 and the prior 
probability for “target is source” is ½)
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that go into a probabilistic 
argument; and

b. the Bayesian 
calculations required to 
compute the conclusions 
based on the different 
disputed assumptions.

Crucially, there should be no 
more need to explain the Bayesian 
calculations in a complex argument 
than there should be any need to 
explain the thousands of circuit level 
calculations used by a calculator to 
compute a long division. Lay people 
do not need to understand how the 
calculator works in order to accept 
the results of the calculations as 
being correct to a suffi cient level of 
accuracy. The same must eventually 
apply to the results of calculations 
from a Bayesian analysis. The more 
widespread use of tools such as 
Bayesian networks makes this a 
feasible target.

However, ensuring that the 
distinction between a) and b) is fi rmly 
understood by lawyers is only a 
necessary requirement for the more 
widespread takeup of Bayes. There is, 
as yet, no signifi cant understanding 
among lawyers that any legal 
argument can ever be couched in 
Bayesian terms. The challenge for 
statisticians is to break down this 
signifi cant cultural barrier. In this 
challenge we also propose that the 
use of Bayesian network models will 
be useful, but any progress requires a 
major educational effort aimed at all 
levels of the criminal justice system. It 
requires ‘buyin’from senior members 
of the legal profession and politicians, 
as well as a united front presented by 
the community of statisticians.

If we can meet these challenges 
then there is no reason why Bayes 
should not become a standard 
(possibly even the central) method for 
evaluating evidence in every aspect of 
legal reasoning.
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